Alkoxylation of Hydridophosphorane. II. Reaction of Hydridophosphorane with Benzenesulphenic Esters

Lunzu Liu," Guowei Li, Mingzhi Huang, Ruzhen Cao, and Shukui Zhang

Institute of Elemento-Organic Chemistry, Nankai University, National Laboratory of Elemento-Organic Chemistry, Tianjin 300071, People's Republic of China

Received 15 April 1992

ABSTRACT

The spirophosphorane 4 underwent reaction with a series of benzene-sulphenic esters **3** to give the cor*responding isolable alkoxyphosphoranes. The reactivities of benzenesulphenic esters* **3** *in this reaction were seen to be dependent on steric hindrance of the R groups. The yields of alkoxyphosphoranes were influenced by the reaction temperature. The probable mechanism was suggested in terms of experimental observations.*

INTRODUCTION

The alkoxylation reactions of hydridophosphoranes have been studied previously [1,21. Bentrude [3] reported in 1987 that alkylthiylation, initiated by **UV** light, of the bicyclic hydridophosphorane **1** with dialkyl disulfides yielded the corresponding isolable thiaphosphoranes, which then reacted with alcohols to give alkoxyphosphoranes. Recently, we studied *[4]* the reactions of the bicyclic hydridophosphorane *2* with alcohols in the presence of diphenyl disulfide to give the corresponding isolable alkoxy-phosphoranes. It was hoped in the present research that the benzenesulphenic esters **3** would act *as* both hydrogen acceptors and nucleophilic reagents in the reactions of spirohydridophosphorane **4** with **3.** The results of this investigation were consistent with these hopes. It was also hoped that the results of this study would provide information on the mechanism **of** these reactions and also on the properties **of** the hydridophosphoranes that might result from them.

RESULTS AND DISCUSSION

5-Hydro- 1 ,4,6,9-tetraoxa *-5* -phosphaspirol[4.4]nonane **4** reacted in benzene with benzenesulphenic esters **3** at SO-60°C to give the corresponding isolable 5-alkoxy- **1,4,6,9-tetraoxa-S-phosphas**piro[4.4]nonanes **5** as the main products (yield 68- 94%), but some by-products *6* and **8** were also detected (Equation 1):

[&]quot;To **whom correspondence should be addressed. Dedicated to Prof. Yao-Zeng Huang on the occasion of his eightieth birthday.**

a: $R = Me$; **b**: $R = Et$; **c**: $R = n$ -Pr;

d:
$$
R = n-Bu
$$
; **e**: $R = n-C_6H_{13}(n-Hex)$.

Products **5a-e** were easily isolable in pure form by distilation, and the structres were confirmed by spectroscopic criteria. Thus, the alkoxylation reactions are preparatively useful; ${}^{1}H$, ${}^{31}P$, and ${}^{13}C$ NMR data are given in Table **1.**

In an attempt to determine what the scission mechanism of the P-H bond and the effect of the R groups in this reaction might be, the reactions of **4** with **3a-e** during different time periods and at different temperatures were studied. The types of phosphorus compounds formed in these reaction mixtures were determined by ³¹P NMR techniques. The results and conditions of the reactions (Equation 1) are collected in Table 2.

When **4** was caused to react with **3b** at room temperature for *5.5* hours, 31P NMR spectroscopy showed that **5b** as well as the by-products 6 (δ_P 8.20) and $7(\delta_{\rm P} - 8.72)$ were formed. The reaction mixture was then heated to 50-60°C. It was found that after a reaction period of 6.4 hours compound **7** disappeared and the amount of the product **5b** increased. Also, compound 8 $(\delta_{P}$ 17.36) appeared.

The overall result of the two-step reaction (Equation 2) was the same as that of the one-step reaction (Equation 1). We had been unable to isolate compound *7* owing to its instability, but its structure was confirmed by the reaction of **4** with benzenesulfenyl chloride (Equation 3).

enesulfenyl chloride (Equation 3).
\n
$$
\begin{bmatrix}\n\mathbf{Q} & \mathbf{D} \\
\mathbf{Q} & \mathbf{D} \\
\mathbf{Q} & \mathbf{D}\n\end{bmatrix}\n\xrightarrow{\text{tPh}SCI + Et}\n\begin{bmatrix}\n\mathbf{Q} & \mathbf{S} \\
\mathbf{Q} & \mathbf{D} \\
\mathbf{Q} & \mathbf{D} \\
\mathbf{Q} & \mathbf{Q}\n\end{bmatrix} (3)
$$

The authentic compound **7** (Equation 3) was the same as the by-product 7 (Equation 2), as shown by comparison of their ${}^{31}P$, ${}^{13}C$, and ${}^{1}H$ NMR spectra. Authentic **7** also underwent alcoholysis to **5** as well as rearrangement to *8.*

The result (Equation 4) was entirely consistent with that observed (Equation 2) and similar to that reported previously [3].

The formation of the by-product *6* is reasonably understood in terms of the alcoholysis of **4.**

Therefore, the complete reaction pathway (Equation 1) may be described as shown in Scheme **1.**

The magnitude of the steric effects of **3** observed in Equation 1 is very apparent in the data of Table 2. These data demonstrated that the reactivities of PhSOR toward **4** were dependent on the steric hindrance of the R groups. The following order of steric effects was observed.

$$
\text{Me} < \text{Et} < n\text{-} \text{Pr} < n\text{-} \text{Bu} < n\text{-} \text{Hex}
$$
\nincreasing sterile hindrance causes decreased rate of reaction

When R was an isopropyl, s-butyl or t-butyl group, PhSOR reacted with **4** only very sluggishly. For example, no more than 10% of **4** had undergone reaction with PhSOBu-t in a week.

EXPERIMENTAL SECTION

The ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$ NMR spectra were run on a JEOL **FX-90Q** spectrometer. The **'H** and 13C chemical shifts are reported in parts per million relative to internal tetramethylsilane. All $31P$ chemical shifts are reported in parts per million relative to *85%* phosphoric acid (external). In all cases, nuclei which are deshielded relative to their respective standards are assigned a positive chemical shift. The ¹³C and ³¹P NMR spectra were obtained by broadband proton decoupling. All manipulations were carried out in a nitrogen atmosphere. All solvents were scrupulously dried and freshly distilled.

General Procedure for Preparation of Benzenesulphenic Esters 3a-e

Anhydrous ethyl ether (100 mL) and triethylamine (0.1 1 mol) which had been treated with potassium

	^{31}P		¹ H NMR	$13C$ NMR			
Compound		$Cyclic$ - $CH2$	R	Cyclic-CH ₂ (² J _{CP})	R		
5a	$-27.19d$	3.93 (d, $J14.4$)	3.69 (d, $J14.4$, CH ₃)	59.92 (d, 4.88)	54.77 (d, ${}^2J_{CP}$ 7.33, CH ₃)		
5 _b	-28.94^e	3.86 (d, $J14.4$)	1.23 (dt, $CH3$) 3.91 (dq, $CH2O$)	60.02 (d, 4.88) 60.02 (d, 4.89)	16.41 (d, ${}^{3}J_{CP}$ 7.32, CH ₃) 63.38 (d, ${}^{2}J_{CP}$ 9.76, OCH ₂)		
5c	-27.86	3.92 (d, $J14.4$)	0.96 (t, CH ₃) 1.67 (m, $CH2$) 3.91 (dt, OCH ₂)	60.02 (d, 4.88)	10.29 (s, $CH3$) 23.99 (d, ${}^{3}J_{CP}$ 7.33, CH ₂) 69.12 (d, ² J _{CP} 9.77, OCH ₂)		
5d	-28.13	3.92 (d, $J14.4$)	0.95 (t, $CH3$) 1.20–1.80 (m, CH_2CH_2) $3.60 - 4.40$ (m, OCH ₂)	59.92 (d, 4.88)	13.54 (s, $CH3$) 18.74 (d, $^{4}J_{CP}4.88$, CH ₂) 32.66 (d, ${}^{3}J_{CP}$ 7.32, CH ₂) 67.28 (d, ${}^{2}J_{CP}$ 9.76, OCH ₂)		
5е	-28.26	3.90 (d, $J14.4$)	0.96 (t, CH ₃) 1.20-1.80 (m, $CH2$) $2.56 - 4.36$ (m, OCH ₂)	60.02 (s)	14.08 (s, $CH3$) 22.64 (s, $CH2$) 25.35 (s, $CH2$) 30.60 (d, ⁴ J _{CP} 7.32, CH ₂) 31.52 (d, ${}^{3}J_{CP}4.89$, CH ₂) 67.60 (d, $^{2}J_{CP}$ 9.77, OCH ₂)		

TABLE 1 'H, I3C, **and** 31P **NMR Data** *a*b* **of Compounds 5a-ec**

'Solvent is CDC1,.

^{b1}H ³¹P, and ¹³C-³¹P coupling constants (Hz) in parentheses.

"Satisfactory microanalyses obtained: C, 20.05%; H, 20.05%.

%ef. [l]: -27 ppm.

"Ref. *[8]:* **-28 ppm.**

TABLE 2 The Results and Conditions of the Reaction of 4 with PhSOR[®]

R	Number ^b	Conditions		Contents of Phosphorus Compounds (%)				Yields	
		t(C)	T (hour)	4	5	6		8	of 5a-e
Me	Α	25			80.8	6.8	4.1	2.7	80.8
Et	B	$15 - 20$ $50 - 60$	5.5 6.5		53.2 84.6	3.7 3.1	43.1	6.8	53.2 84.6
	A	$50 - 60$	5.5		94.8	2.1		3.1	94.8
$n-Pr$	B	15 $50 - 60$			48.1 68.1	5.6 10.1	41.1 3.9	10.1	48.1 68.1
n-Bu	B	20 $50 - 60$	5.5 11	66.7 33.7	13.6 46.5	12.9 10.1	6.8 3.2	6.5	40.8 70.1
n -Hex	A	50	100	35.9	53.4	1.9		2.4	83.3

"The contents and yields were determined by 31P NMR spectroscopy.

bA-representative of a. **one-step reaction.**

8-representative of a two-step reaction.

hydroxide pellets and alcohol **(0.1 1** mol) were added to a **250** mL reaction flask. The mixture was cooled in an ice-salt bath. Benzenesulphenyl chloride was added to the mixture dropwise over $\dot{2}$ hours at $-10-$ **0°C** with vigorous stirring **[5] (0.1** mol). At the end of the addition, the mixture was filtered to remove the precipitated $Et_3N \cdot HCl$. The filter cake was washed with two **15** mL portions of ether, the ether was evaporated in vacuo, and the reside was distilled to give the benzenesulphenic esters **3a-e.**

3a: yield 60.7%; bp 58-60°C/10 mm Hg,

nD2'1.5613. (Ref. **[6]:** bp **50°C/1** mm Hg, $n_{\rm D}^{20}$ 1.5630.)

- **3b:** yield **69.6%.** bp. **54-56"C/0.3** mm Hg, **uD2'1 .5462.** (lit **[6]:** bp. **76"C/1.5** mm Hg, $n_{\rm D}^{\ \,20}$ 1.5480) $^+$
- **3c:** yield **47.6%.** bp. **82-88"C/1.5** mm Hg, **~~~~'1.5393.** (lit **[6]:** bp. **56"C/0.2** mm Hg, $n_{\rm D}^{20}$ 1.5390) $^{\circ}$
- **3d:** yield **52.2%.** bp. **84-88"C/0.8** mm Hg, **nD2'1.5337.** (lit **[6]:** bp. **66"C/0.1** mm Hg, $n_{\rm D}^{20}$ 1.5330)

SCHEME 1

3e: yield 50.5%. bp. 116-120°C/0.8 mm Hg, $n_{\rm D}^{25}$ 1.5260. ¹H NMR (CDCl₃): 0.92 (t, 3H, $CH₃$), 1.16-1.88 (m, 8H, CH₂), 3.84 (t, 2H, OCH₂), 7.24-7.46 (m, 5H, C₆H₅).

Hydridophosphorane/Byzensulphenic Ester Reaction Monitored by ³¹P NMR Spectroscopy

Benzenesulphenic ester **3 (10** mmol) and spirohydridophosphorane **4** [7] (10 mmol) were added to anhydrous benzene (20 mL). The mixture was stirred at the indicated temperature (Table 2) and occasionally inspected by $3^{1}P$ NMR spectroscopy. A sealed capillary tube containing trimethyl phosphate was placed in the NMR tube. The pulse delay time was 60 seconds. The ³¹P NMR spectra were taken to give compounds **4-8** to trimethyl phosphate ratios, from which amounts of compounds **4-8** were determined. The yields of the products **5a-e** were calculated based on the amount of hydridophosphorane **4** that was consumed in the reaction. The results and yields are given in Table 2.

General Procedure for Preparation of Alkoxyp hosp ho ranes 5a -e

Each of the above reaction mixtures, inspected by ³¹P NMR spectroscopy, was concentrated, and then the residue was vacuum distillated to give the desired alkoxyspirophosphoranes **5a-e,** which would crystallize when cooled.

- **5a:** bp 78-82"C/0.03 mg Hg. (Ref. [l]: bp 90- 98"C/0.01 mm Hg.)
- **5b:** bp 90-94"C/0.01 mm Hg.
- **5c:** bp. 92-94"C/0.05 mm Hg.
- **5d:** bp. 102-106"C/0.05 mm Hg.
- 5e: bp. 118-121°C/0.05 mm Hg.

Preparation of Thiaphosphorane 7

Spirohydridophosphorane **4** (1.52 g, 10 mmol) and triethylamine (1.01 g, 10 mmol) were added to anhydrous benzene (40 mL). Benzenesulfenyl chloride $(1.73 \text{ g}, 12 \text{ mmol})$ in benzene (10 mL) was added to the stirred mixture during 30 minutes at 0-5°C. After having been stirred 5 hour at room temperature, the ^{31}P NMR spectrum was taken and indicated the formation of compounds **7** (δ_p -8.75). The filtrate was concentrated on a rotary evaporator to give a sticky material. Petrolem ether (10 mL) was added to give a white solid. The solid was filtered off and dried in vacuo to yield **7** (1.21 g, 46.5% yield), ³¹P NMR (CDCl₃): -8.48 ; ¹H NMR: 7.16-7.44 (m, 2H, meta, para), 7.44-7.72 (m, 1 H, *ortho*), 3.76–4.08 (m, 8H, CH₂); ¹³C NMR: 61.10 (d, ²J_{pc}2.44, Ch₂), 128.39 (s, meta-C, para-C), 129.20 (d, ²L₋₇.32, ipso-C), 135.11 (d, ³L, 4.88, ortho-C).

\$?arrangement of Compound 7 Monitored by P NMR Spectroscopy

Compound **7** (0.52 g, 2 mmol) was added to benzene (4 mL). The mixture was stirred and heated to $50-60^{\circ}$ C. After 2 hours, the 31 P NMR spectrum indicated the formation of compound δ ($\delta_{\rm P}$ 17.09).

Alcoholysis of Compound 7 Monitored by 31P NMR Spectroscopy

Compound **7** (0.52 g, 2 mmol) was added to ethanol (4 mL) and benzene (4 mL). The mixture was stirred and heated to $50-60^{\circ}$ C. After 5 hours, the 31 P NMR spectrum indicated the formation of compound **5b** $(\delta_{\rm P}$ –28.74).

ACKNOWLEDGMENTS

This research has been supported by the National Natural Science Foundation of China and National Laboratory of Elemento-Organic Chemistry.

REFERENCES

- **¹¹¹***C.* **Laurenco. R. Burgada,** *Tetrahedron,* **32, 1976, 2253.**
- **[2] L. Riesel, D. Lindemann,** *G.* **Ohms,** *Z. Chem.,* **5,1987, 181.**
- **131 W.** *G.* **Bentrude, T. Kawashima, B. A. Keys, M. Garroussian, W. Heeide, D. A. Wedegaertner,** *J. Am. Chem. SOC., 109,* **1987, 1227.**
- **[4] L. Z. Liu,** *G.* **W. Li, M. Z. Huang,** *Phosphorus and Sulfur,* **69, 1992, 1.**
- **[S] A. N. Kuliev, A. K. Kyazimzade, K. Z. Guseinov,** *Zh. Org. Khim., 6(10),* **1970, 2110.**
- **[6] D. A. Armitage,** *Synthesis,* **1984, 1042.**
- **[7] L. Z. Liu,** *G.* **W. Li, M. Z. Huang,** *Chem. J. Chin. Univ., 13(4),* **1992, 495.**
- **[8] Y. Kimura, M. Miyamoto, T. Saegusa,** *J. Org. Chem. 47,* **1982, 916.**